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A Stochastic Method to Determine the 
Shape of a Drop on a Wall 
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We present results of a stochastic simulation which determines the shape of a 
liquid drop, subject to gravity, on a wall. The system is modeled using an Ising 
model in a field gradient, with Kawasaki dynamics governing the time 
dependence. We can locate a phase transition between a hanging and a sliding 
phase with high precision and determine its critical exponents. 
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Liquid drops hanging or sliding down walls or tilted planes have been 
studied for a long time. It is known that, depending on the surface tension 
of the fluid, the adhesion force to the substrate, the tilting angle of the 
plane, and the volume, a drop will either hang or slide down, both with a 
characteristic shape and with well-defined contact angles which can be 
accurately determined experimentally. (1~ The transition between the 
hanging and the sliding cases is characterized by a critical drop volume. 

The theoretical determination of the shape of a hanging or sliding 
drop has long been a challenge; and very diverse methods have been used, 
some of them yielding rather good results. On one hand the Young-  
Laplace equations have been solved by Galerkian finite-element methods. (2~ 
Lubrication theory has been used to obtain in particular the maximum 
drop volumeJ 3~ The basic optimization problem of finding the shape 
that for given volume lowers the surface tension has been attacked by 
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approximating the shape by spline functions (4) and, in a more refined way, 
by generalizations of Winterbottom functions. (5) 

In this note we propose an alternative stochastic method for this 
optimization problem. For calculational simplicity we will work on a 
square lattice, i.e., restrict ourselves to the two-dimensional case, and con- 
sider Ising variables ai on each site i. Spin " +  1" represents the fluid and 
" - 1 "  the air. Our lattice has fixed boundary conditions. A drop is placed 
on the right vertical boundary. Spins on the boundary adjacent to the 
initial drop are made " +  1" and all other boundary spins are made " -  1." 
This right vertical boundary represents the wall on which the drop should 
hang or slide, and at the initial contact surface of this wall the drop should 
feel an adhesion force while the lower part is repulsive. This initial wetting 
of the boundary is kept wet all the time. Physically one can think of a drop 
that hangs on a part of the wall that it has already wetted, but does not 
slide down because the part below is not wetted yet (for instance, because 
of the presence of dirt). 

The presence of gravity is introduced by a uniform field gradient g: On 
the top line we have a field hi with an energy hi ~line ~ O'i, on the bottom 
line (Lth line) a field hL is applied analogously, and for the lines in 
between, the linearly interpolated value hJ = h~ + ( j -  1) (hL-  h~)/(L- 1) is 
applied. We define the "gravity g" as g =  (hL-h~)/L. Its value is always 
chosen to be positive. 

We start with a semicircular drop of volume V, i.e., V " +  1" spins, 
attached to the wall with topmost site of the drop four lattice sites below 
the top line of our lattice. In the subsequent time evolution of this drop 
three elements must be taken into account: 

1. In order to take into account the effects of surface tension and sur- 
face rigidity using a thermodynamic approach, we introduce two energies, 
the nearest-neighbor attraction of spins of equal sign, which tends to 
reduce the surface of the drop, and the next-nearest-neighbor attraction, 
which is the first approach on a lattice to reduction of the curvature. We 
thus have a Hamiltonian 

nn  n n n  j l ine j 

in which we set the coupling constants to be unity, which means that 
surface tension and rigidity should be set to two if they are defined by the 
amount of energy change in a flip. On the right vertical boundary this 
Hamiltonian automatically has the effect of an attraction of the drop on 
the upper half and a repulsion on the lower half. This Hamiltonian is used 
to introduce a canonical spin-flip Monte Carlo dynamics. 
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2. In order to impose volume conservation (we consider an incom- 
pressible, nonvolatile fluid), long-range Kawasaki spin exchange is used. 
That means that two spins on the surface of the drop, i.e., the interface 
between the two types of spins, are chosen at random, one being " +  1" and 
the other " -  1." If a random number uniformly distributed between 0 and 
1 is less than the spin-flip probability p =  exp(/~ AE) ,  the two spins are 
interchanged (as long as condition 3 is fulfilled). A E  is the energy difference 
between the configuration before and after the interchange given by Eq. (I). 

3. The topmost and the lowest sites of the initial drop are pinned 
down, which means they are always " +  1." 

Using the above dynamics, we relaxed the initially semicircular drops 
by applying t r spin exchange attempts. In Fig. 1 we see the result obtained 
in a lattice of L = 257 with V= 6613 and g = 0.001 after t r = 5 • 107 itera- 
tions at a temperature of T,/Tc = 0.25, where Te is the critical temperature 
of the Ising model. In fact, Fig. 1 is a shape averaged over 10 samples using 
an averaging procedure described below. We see that the drop has slid 
down and is already touching the bottom of the system. Note that since the 
upper part of the right vertical wall is " +  1," it is technically treated as part 
of the drop, and so microdroplets are left behind like a thin film. Since the 
lower part of the wall is repulsive, the drop does not wet it. Due to the 
stochastic nature of our method, the surface of the drop has a certain 
roughness. 

Essentially, the temperature only seems to change the speed of the 
dynamics. Although there is no finite roughening temperature in two 
dimensions, at very low temperatures one tends to get flat facets of a size 
that increases exponentially with decreasing temperature. These facets are 

Fig. 1. Shape after 5 • 107 Monte Carlo exchanges starting with a semicircular drop of 
radius 65 in lattice units at T/T~ = 0.25 and g = 0.001. The averages are over ten independent 
runs and taking sites that belong to the drop more than five times. 
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artefacts of the underlying lattice and can in principle be removed by a 
more detailed, long-range definition of curvature in  the Hamiltonian. The 
easiest way to reduce this lattice problem, however, is to increase the tem- 
perature sufficiently. As seen from Fig. 1, a very satisfactory result can 
already be obtained well below To. 

Although real drops are subject to thermal fluctuations and should 
therefore not have completely smooth surfaces, the roughness is certainly 
less pronounced than for the drop obtained from a single time step of our 
simulation. However, it is well known that in stochastic methods one has 
to take averages over M statistically independent samples. One way to 
"average" the shape is to store the number  of samples mi for which spin i 
has the value " +  1." Then one can define the interior of the drop as being 
comprised of all the sites j for which mj is larger than M/2. In fact, the 
shape shown in Fig. 1 is the result of just such a calculation with M = 10. 
This average shape is certainly smoother than the nonaveraged case, but 
still consists of steps on the length scale of a lattice unit. This effect can also 
be removed by linearly interpolating the values of the mi on the lattice and 
choosing the continuous line for which the field m defined by the interpola- 
tion equals M/2. A picture of such a drop is shown in Fig. 2 after averaging 
over 100 samples. In this case the parameters were chosen such that the 
drop does not slide. 

Fig. 2. Shape of drop of initial radius of 65 in lattice units (i.e., a volume of V= 6702) in a 
lattice of L = 513 after tr = 5 x 107 time steps and averaging over M = 20 independent samples 
(using for each one the last 1000 configurations at intervals of 100 time steps) and using an 
interpolation to get a smooth line. This simulation took 15 hr on one processor of an Alliant 
FX2800 at the GMD. 
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As has been previously discussed, ~3'5) it is easy to see that the relevant 
parameter  that determines if a drop hangs or slides is the product of 
volume and gravity: H =  Vg. Using the model described above, we want to 
locate with high accuracy the critical value H*  above which the sliding sets 
in and determine the critical behavior of various physical properties around 
this point. 

An interesting observation is that for H just above H *  the drop does 
not immediately slide down, but hangs on the wall for a while before 
suddenly breaking off after a time t s that depends on H. This can be seen 
by calculating the height of the center of mass of the drop as a function of 
time ( =  Monte Carlo exchanges) as shown in Fig. 3 for the case of fixed 
volume V =  1710 and varying gravity g. From Fig. 3 one sees that the 
center of mass first moves down slowly, fluctuating due to the stochastic 
nature of the dynamics, and then at a sharply defined time ts moves down- 
ward with high speed. When g* is approached, the time t~ diverges. This 
effect can be analyzed quantitatively by calculating for fixed g the average 
(t~> over many samples plotting 1/t~ as a function of g. The result of such 
a calculation is shown in Fig. 4 for the case of V = 468. From the data in 
this figure we determine that (t~> diverges at g * =  0.0124 +0.0001, which 
gives a value of H*  = 5.79. For  V =  1710 we find H*  = 5.77, a results which 
confirms our expectation that the product H =  Vg is the relevant 
parameter. Note that also the volume has an inaccuracy in the third digit 
due to the lattice discretization. 

When the critical point is approached from above, ( t~)  diverges with 
a power law. This can be seen in the double logarithmic plot of Fig. 5. 
There again the volume V =  468 is fixed and the distance from the critical 
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Fig. 3. Height of the position of the center of mass as a function of time for an initially 
circular drop of radius 33 in lattice units for T/Tc=0.25 and L= 513 for different values of 
g: 0.004, 0.0035, 0.00343, and 0.0034 from left to right, each for one single configuration. 
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Fig. 4. Applied gravitation g vs. the inverse average breakup time ( t~)  for an initially 
semicircular drop of radius 17 in lattice units ( V =  468), L = 513, M =  10, and T/Tc= 0.25. 

point is measured by (g-g*)/g*. We see that the points lie nicely on a 
straight line of slope 1.25. We conjecture that this exponent x ~ 1.25 
defined by <ts> ,~ (g-g*)-~ is universal. 

When the critical point is approached from below, i.e., from the static 
case, one sees that the hanging drop deforms more and more, having an 
increasingly large overhang. This effect can be measured by monitoring the 
average number mb of sites belonging to the drop with heights below the 
lower contact point of the drop with the wall, i.e., sites lying in the over- 
hang. The log-log plot of Fig. 6 shows that the dependence is also numeri- 
cally consistent with a power law: mb~ (g*-g)-Y with y~0 .44 ,  which 
means that the size of the overhang diverges when the onset to sliding is 

Fig. 5. 
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Log-log plot of the average breakup time <t , )  as a function of the distance from the 
critical point (g - g* )/g* for g ~> g*. 
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Log-log plot of the average mass mb in the overhang of the drop as a function of 
(g*-g)/g* for V=468, L=513,  M =  10, and 7yTc=0.25. 

approached. Since dominant terms in surface tension are taken into 
account in our model, we again conjecture that this exponent y is universal. 

We also looked at the experimentally easily accessible lower contact 
angle 0, defined as the angle at the lower contact point of the drop with the 
wall measured from the tangential of the shape of the drop at this point to 
the axis of the wall pointing down (increasing gravity). For  a given drop, 
this angle can be measured quite accurately with a ruler. This angle goes to 
zero when the critical point is approached from g ~< g*, i.e., for the hanging 
drop presumably again with a power law defining a critical exponent. It is, 
however, not easy to measure very small angles, also due to the lattice 
effects, that tend to favor crystal planes as edges. Decreasing the tem- 
perature, one can in fact see that the contact angle tends to 45 ~ irrespective 
of the value of g. In Fig. 7 we show this temperature dependence of the 
contact angle for H = 4.18 and see that the value of the contact angle does 
not saturate yet to a well-defined value at temperatures as high as Tel2. 
Since we wanted to avoid getting close to the critical point of the Ising 
model, we preferred not to make predictions about the critical behavior of 
the contact angle. 

For  the above reason we also refrained from comparing our shapes 
directly to experimental photographs or other numerically obtained shapes. 
Another reason is that we have worked with a fixed set of values for surface 
tension, rigidity, and adhesion force and did not want to explore a large 
parameter space to fit the corresponding experimental values. Also, most 
experiments deal with three-dimensional systems. 

In summary, we have presented a new stochastic method based on 
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Fig. 7. Contact  angle tan(0) as a function of reduced temperature TIT c 
V=6702,  L = 5 1 3 ,  M = I 0 ,  t r = 5 X l 0 7 .  

for g = 6.3 • 10 4, 

Ising dynamics on a square lattice to obtain the shape of a drop and 
showed how this method works in the case of a two-dimensional drop 
hanging on a vertical wall. Similar stochastic methods using Ising variables 
on a lattice have in fact been formulated for sessile drops (no gravity), (6) 
wetting fronts, (7) and vesicles. (8) Our work can be trivially extended to the 
cases of tilted or horizontal walls, three-dimensional drops, and to 
arbitrary ratios of adhesion strengths and rigidity to surface tension. We 
found rather encouraging results concerning the determination of the 
critical point at which the drop starts sliding and its critical exponents. 
A drawback of our method is the presence of anisotropies generated due 
to the underlying lattice, but they can be minimized by increasing the 
temperature. Simulations in the continuum (tethered surfaces) or on 
random lattices could be used to avoid this effect altogether. 
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